3.99 \(\int \frac{1}{\sqrt{-3+3 x^2-2 x^4}} \, dx\)

Optimal. Leaf size=90 \[ \frac{\left (\sqrt{6} x^2+3\right ) \sqrt{\frac{2 x^4-3 x^2+3}{\left (\sqrt{6} x^2+3\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\sqrt [4]{\frac{2}{3}} x\right ),\frac{1}{8} \left (4+\sqrt{6}\right )\right )}{2 \sqrt [4]{6} \sqrt{-2 x^4+3 x^2-3}} \]

[Out]

((3 + Sqrt[6]*x^2)*Sqrt[(3 - 3*x^2 + 2*x^4)/(3 + Sqrt[6]*x^2)^2]*EllipticF[2*ArcTan[(2/3)^(1/4)*x], (4 + Sqrt[
6])/8])/(2*6^(1/4)*Sqrt[-3 + 3*x^2 - 2*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0102385, antiderivative size = 90, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.062, Rules used = {1103} \[ \frac{\left (\sqrt{6} x^2+3\right ) \sqrt{\frac{2 x^4-3 x^2+3}{\left (\sqrt{6} x^2+3\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{\frac{2}{3}} x\right )|\frac{1}{8} \left (4+\sqrt{6}\right )\right )}{2 \sqrt [4]{6} \sqrt{-2 x^4+3 x^2-3}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[-3 + 3*x^2 - 2*x^4],x]

[Out]

((3 + Sqrt[6]*x^2)*Sqrt[(3 - 3*x^2 + 2*x^4)/(3 + Sqrt[6]*x^2)^2]*EllipticF[2*ArcTan[(2/3)^(1/4)*x], (4 + Sqrt[
6])/8])/(2*6^(1/4)*Sqrt[-3 + 3*x^2 - 2*x^4])

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{-3+3 x^2-2 x^4}} \, dx &=\frac{\left (3+\sqrt{6} x^2\right ) \sqrt{\frac{3-3 x^2+2 x^4}{\left (3+\sqrt{6} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{\frac{2}{3}} x\right )|\frac{1}{8} \left (4+\sqrt{6}\right )\right )}{2 \sqrt [4]{6} \sqrt{-3+3 x^2-2 x^4}}\\ \end{align*}

Mathematica [C]  time = 0.099026, size = 142, normalized size = 1.58 \[ -\frac{i \sqrt{1-\frac{4 x^2}{3-i \sqrt{15}}} \sqrt{1-\frac{4 x^2}{3+i \sqrt{15}}} \text{EllipticF}\left (i \sinh ^{-1}\left (2 \sqrt{-\frac{1}{3-i \sqrt{15}}} x\right ),\frac{3-i \sqrt{15}}{3+i \sqrt{15}}\right )}{2 \sqrt{-\frac{1}{3-i \sqrt{15}}} \sqrt{-2 x^4+3 x^2-3}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[-3 + 3*x^2 - 2*x^4],x]

[Out]

((-I/2)*Sqrt[1 - (4*x^2)/(3 - I*Sqrt[15])]*Sqrt[1 - (4*x^2)/(3 + I*Sqrt[15])]*EllipticF[I*ArcSinh[2*Sqrt[-(3 -
 I*Sqrt[15])^(-1)]*x], (3 - I*Sqrt[15])/(3 + I*Sqrt[15])])/(Sqrt[-(3 - I*Sqrt[15])^(-1)]*Sqrt[-3 + 3*x^2 - 2*x
^4])

________________________________________________________________________________________

Maple [C]  time = 0.667, size = 87, normalized size = 1. \begin{align*} 6\,{\frac{\sqrt{1- \left ( 1/2-i/6\sqrt{15} \right ){x}^{2}}\sqrt{1- \left ( 1/2+i/6\sqrt{15} \right ){x}^{2}}{\it EllipticF} \left ( 1/6\,\sqrt{18-6\,i\sqrt{15}}x,1/2\,\sqrt{-1+i\sqrt{15}} \right ) }{\sqrt{18-6\,i\sqrt{15}}\sqrt{-2\,{x}^{4}+3\,{x}^{2}-3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-2*x^4+3*x^2-3)^(1/2),x)

[Out]

6/(18-6*I*15^(1/2))^(1/2)*(1-(1/2-1/6*I*15^(1/2))*x^2)^(1/2)*(1-(1/2+1/6*I*15^(1/2))*x^2)^(1/2)/(-2*x^4+3*x^2-
3)^(1/2)*EllipticF(1/6*(18-6*I*15^(1/2))^(1/2)*x,1/2*(-1+I*15^(1/2))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-2 \, x^{4} + 3 \, x^{2} - 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-2*x^4+3*x^2-3)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(-2*x^4 + 3*x^2 - 3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-2 \, x^{4} + 3 \, x^{2} - 3}}{2 \, x^{4} - 3 \, x^{2} + 3}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-2*x^4+3*x^2-3)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-2*x^4 + 3*x^2 - 3)/(2*x^4 - 3*x^2 + 3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{- 2 x^{4} + 3 x^{2} - 3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-2*x**4+3*x**2-3)**(1/2),x)

[Out]

Integral(1/sqrt(-2*x**4 + 3*x**2 - 3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-2 \, x^{4} + 3 \, x^{2} - 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-2*x^4+3*x^2-3)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(-2*x^4 + 3*x^2 - 3), x)